INASA=TII =108, 754
NASA Technical Memorandum 108784

NASA-TM-108784 1994001 1065

Reactive System Verification
Case Study—Fault-Tolerant
Transputer Communication

D. Francis Crane and Philip J. Hamory

September 1993

NNASN

National Aeronautics and
Space Administration

NASA Technical Memorandum 108784

Reactive System Verification
Case Study—Fault-Tolerant
Transputer Communication

D. Francis Crane and Philip J. Hamory, Ames Research Center, Moffett Field, California

September 1993

NNASA

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

Summary

A reactive program is one which engages in an ongoing
interaction with its environment. A system which is
controlled by an embedded reactive program is called a
reactive system. Examples of reactive systems are aircraft
flight management systems, bank automatic teller
machine (ATM) networks, airline reservation systems
and computer operating systems. Reactive systems are
often naturally modeled (for logical design purposes) as a
composition of autonomous processes which progress
concurrently and which communicate to share
information and/or to coordinate activities.

Formal (i.e., mathematical) frameworks for system
verification are tools used to increase the users’ confi-
dence that a system design satisfies its specification. A
framework for reactive system verification includes
formal languages for system modeling and for behavior
specification and decision procedures and/or proof-
systems for verifying that the system model satisfies the
system specifications.

In the study reported here, using the Ostroff framework
for reactive system verification, an approach to achieving
fault-tolerant communication between transputers was
shown to be effective. The key components of the design,
the decoupler processes, may be viewed as discrete-event-
controllers introduced to constrain system behavior such
that system specifications are satisfied.

The Ostroff framework was also effective. The expres-
siveness of the modeling language permitted construction
of a faithful model of the transputer network. The relevant
specifications were readily expressed in the specification
language. The set of decision procedures provided was
adequate to verify the specifications of interest.

The need for improved support for system behavior
visualization is emphasized.

Introduction

Computer programs can be classified as either rrans-
Jformational or reactive. Transformational programs, the
more common type, are typically designed to transform
data via appropriate algorithms and to then output the
results of the computation and terminate. First Order
Logic (ref. 1) is routinely used to specify and to reason
about the correctness of transformational programs. A
reactive program is one that engages in an ongoing
interaction with its environment (ref. 2). A system that is
controlled by an embedded reactive program is called a
reactive system. Examples of reactive systems are aircraft
flight management systems, bank automatic teller
machine (ATM) networks, airline reservation systems,

and computer operating systems. Reactive systems are
often naturally modeled (for logical design purposes) as a
composition of autonomous processes which progress
concurrently and which communicate to share informa-
tion and/or to coordinate activities. Reactive systems are
nondeterministic in that the sequence of events is not
specified but depends on actions of the environment.
Reactive system specifications often include response
time requirements.

These reactive system process characteristics (autono-
mous, concurrent, communicating, nondeterministic, and
time sensitive) have forced the development of new
approaches to verify that a reactive system satisfies its
specification. As noted by Alur (ref. 3), “The number of
formalisms that purportedly facilitate the modeling,
specifying and proving of timing properties for reactive
systems has exploded over the past few years.” The
diversity of process communication and coordination
constructs and the variety of specifications of interest
have contributed to this profusion of frameworks. The
features required to further improve next-generation
frameworks can best be determined through use and
evaluation of currently available frameworks in many
diverse applications. One objective for this report is to
contribute to that evolutionary process.

The framework chosen for the analysis of a particular
system must allow faithful modeling of essential system
features in order to reliably infer system behavior from
model behavior. In the study reported here, a framework
developed by Ostroff was applied to verify an approach to
achieve fault-tolerant transputer communication. In the
following sections, we outline the Ostroff framework,
review the approach to fault-tolerant transputer communi-
cation verified, describe the Transputer Network Model,
and discuss verification procedures and verification
results. The need for improved support for system
behavior visualization is emphasized.

The Ostroff Framework

Formal (i.e., mathematical) frameworks for system
verification are tools used to increase the users’
confidence that a system design satisfies its specification.
A framework for reactive system verification includes
formal languages for system modeling and for behavior
specification and decision procedures and/or proof-
systems for verifying that the system model satisfies the
system specifications. Ostroff’s book (ref. 4) should be
consulted for a comprehensive description of the
framework used in this study (hereinafter referred to as
the Framework). The description here is informal and
necessarily incomplete.

A system is modeled as a composition of autonomous,
concurrent, communicating processes. Each process is
represented by a diagram. The elements of the diagram
are nodes and labeled, directed edges which connect
nodes and which model process transitions. For each
process an activity or control variable, Ay, is defined
which ranges over the process nodes to indicate the
location of control in the process.

We next review two types of transition which will be
needed to model the transputer network. An assignment
transition is illustrated in figure 1.

The transition 1 is enabled if control is at ag (Ay = ag) and
if guard evaluates to TRUE. Enabled transitions are held
for at least lower ticks of the external (conceptual) clock
and must occur no later then upper ticks of the clock. If
the enabled transition 7 is taken, then Ay will be assigned
the value ag and the variables y1,..., yn Will be assigned
the values of the expressions e1,...,ep, respectively . If a
guard is missing, it is assumed to be TRUE. If the list of
variables is missing, then no variables are assigned values
by the transition. If the time bounds are missing, they are
assumed to be (lower: 0, upper: infinity), i.e., the
transition is neither held nor forced.

Processes communicate via named channels in order to
either transfer information or coordinate activities. A
synchronous communication transition is illustrated in
figure 2.

The meaning of the transition label “chan ! expr” is: if
this transition is taken, then the value of the expression
“expr” will be sent on channel “chan.” The meaning of
the transition label “chan ? y” is: if this transition is
taken, then the value received on channel “chan” will

be assigned to the variable “y.” Communication is
synchronous, i.e., enabled only if matching (same
channel) transitions in both sending and receiving
processes are simultaneously enabled. The first process to
reach a send or receive transition will block, i.e., suspend
activity, until the matching transition is also enabled. If an
enabled communication transition is taken, the variable
assignment described is made and then both processes
continue independently.

A system behavior is a sequence of states wherein the
initial state satisfies an initial condition specification and
where following states are reached by taking an enabled
transition in any component process. When transitions in
a number of processes are enabled, the next transition
taken is chosen nondeterministically. (The failure con-
dition in which none of the component processes can
progress because all transitions are disabled is called
deadlock.) A system is said to satisfy a specification if all
possible system behaviors satisfy the specification. The
Framework specification language and decision
procedures are described in a later section.

guard —> 1 [yq:eq, ... Yn : €nl : (lower, upper)

>Q

ag source node
aq destination node
t transition label

guard boolean expression

aq

Y1; - Y Vvariables
€1, ... € expressions
lower lower time bound

upper upper time bound

Figure 1. Assignment transition syntax.

Sending
Process Transition

guardg — chan ! expr

® >0
S Sj

guardg, guard, boolean expressions

S 'm source nodes
Sj» 'n destination nodes
chan communication channel

Receivng
Process Transition

guard, —-=chan ? y

[] >

'm ™

! sending process identifier
? receiving process identifier
expr expression

y process variable

Figure 2. Synchronous communication transition syntax.

Fault-Tolerant Transputer Communication

A transputer is a very large scale integration (VLSI)
device which combines on a single silicon chip—a
processor, memory for program storage, hardware-timers,
and communication controllers which permit direct
synchronous communication with other transputers

(ref. 5). Networks of transputers have been used to
implement a wide variety of reactive systems including
systems for (a) robot guidance and control (ref. 6),

(b) piloted-helicopter simulation (ref. 7), and (c) signal
processing (ref. 8). Approaches to achieve fault-tolerant
communication between transputers were investigated in
connection with a proposed aircraft application. Recall
from the discussion of synchronous communication that
a process which is ready-to-send will block until the
matching process is ready-to-receive. If there is only a
single physical channel between two transputers and that
channel fails, then a process will block if it attempts to
send on the failed channel. A system that depends on
timely communication over the failed channel will fail.

One cannot achieve fault-tolerant communication
between processes on different transputers by simply
connecting a second physical channel directly between
the processes and routinely sending all data over both
channels. The sending process will block when it attempts
to send on a failed channel even though the other channel
is fully functional. An approach which does (as will be
shown) provide fault-tolerant communication between a
process PRODUCER executing on one transputer and a
process CONSUMER executing on another is outlined in
figure 3.

The key feature of the design is that two concurrent
decoupler processes (DECOUPLER 1 and DECOUPLER
2) are defined on Transputer 1, each of which communi-
cates with PRODUCER over two internal channels and
with CONSUMER over a physical channel. (Internal
channels, used to communicate between processes

on the same transputer, are implemented in software.)
DECOUPLER 1 continuously loops through a sequence
of three synchronous communications:

1. Input data on internal channel outl from
PRODUCER

2. Output data on physical channel send1 to
CONSUMER

3. Signal PRODUCER on internal channel status1

DECOUPLER 2 continuously loops through a similar
sequence of three synchronous communications using
channels out2, send2, and status2. When both physical
channels are operational, PRODUCER sends all infor-
mation to CONSUMER over both physical channels. If
physical channel send1 fails, then DECOUPLER 1 will
block when it next attempts to use send1. However,
PRODUCER will detect (infer) that DECOUPLER 1 is
blocked if the signal on statusl is not received within a
prespecified time. Thereafter, PRODUCER will continue
to communicate over the intact physical channel. The
decoupler processes are effectively discrete-event-
controllers introduced to constrain system behavior such
that system specifications are satisfied.

Transputer #1

Transputer #2

| Decoupler 1

|
l
I

send1

X
Auﬂ

Producer

Consumer

I
l
|
|
|

w
stah

Decoupler 2

!
| send2

Figure 3. Sketch illustrating the concurrent processes PRODUCER, DECOUPLER 1, DECOUPLER 2 and CONSUMER
and the communication channels (out1, out2, send1, send2, status1, status2) connecting the processes. The decoupler
processes are effectively discrete-event-controllers introduced to ensure that communication between PRODUCER and
CONSUMER is not disrupted by failure of external channel send1 or send2.

The Transputer Network Model

OCCAM is the name of a concurrent programming
language used to program transputers and transputer
networks (ref. 9). To verify the approach to fault-tolerant
transputer communication outlined above, an OCCAM
implementation of the approach was first translated into
the Framework diagram language representation shown in
figure 4. A faithful translation was possible because both
languages view systems as a composition of autonomous,
concurrent, communicating processes and each OCCAM
construct was expressible in the diagram language. In
particular, the semantics of the synchronous communica-
tion construct in each language was identical.

The maximum size of the composite-system state space
is an exponential function of the number of processes.
Therefore, when attempting verification, it is important
to simplify the system model by “abstracting away”
unessential detail. Four such simplifications, which taken
together reduce the size of the state space by many orders
of magnitude, are incorporated into figure 4 and
described next.

Focus on Process Communication Logic

The process communication logic is embedded in a

simple, cyclic PRODUCER-CONSUMER system (fig. 3).

The single transitions, produce in PRODUCER and
consume in CONSUMER, represent the “other” activities

of the communicating processes which typically include
complex computations and communication with other
transputers over other channels.

Simplify Data Structures

OCCAM channel protocol declarations permit communi-
cation of complex data structures. Data structure details
are irrelevant when verifying OCCAM-level process
communication logic because autonomous, lower-level
controllers manage the physical data transfer. In figure 4,
each communication transfers a single integer.

Project Behavior Using Logical Variables

An essential aspect of the design is the fact that, unlike a
sending process which blocks until a matching receiving
process is enabled, OCCAM semantics permit a receiving
process to start a hardware-timer and to take a default
action if the expected communication is not received
before the timer “times out.” When the external channels
are functional, these time-out transitions are never taken.
The logical variable Faill (Fail2) is used in the guard

of the send1 (send2) channel time-out transitions to
eliminate the time-out transitions from the reachability
graph (described in the next section) when external
channel send1 (send2) is intact. Effectively we enhance
system behavior visualization by obtaining a projection of
relevant behavior.

l PRODUCER
PROD1 (Pr1)

(Pr = pr2 4 (not Ok1))— skip1

pri0 priz2

exitpar

DECOUPLER 1 (Dc1)
outl ? Detd (not Fall1)—send1a,c ! Deid

status1 | TRUE

CONSUMER (C)

consumet

send2c ? Cd

l PROD (Pr) 3
produce enterpar sendia ? Cd
N . » Fall2 ~»tod
Failt = to4
| send2a_? Cd
exitpar
\/::m—?m\\

l PROD2 (Pr2)
(Pr = pr2 » (not Ok2)) —= skip2

(Falt2) —to2 {Ok2: FALSE]

pra2o

exitpar

2 ¢

consume2

DECOUPLER 2 (Dc2)
out2 7 Detd {not Fail2) — send2a,c ! Dc2d

|

status2 ! TRUE

L - - - = =

Figure 4. Ostroff diagram language representation of PRODUCER, DECOUPLER 1, DECOUPLER 2, and CONSUMER
processes. The PRODUCER process is modeled as a composition of concurrent processes PROD, PROD1, and PROD2.
The name of the Activity variable for each process is shown in parentheses following the process name. The initial value
of the Activity variable for each process is indicated by an arrow (—). The initial value for all data variables (Pd, Dc1d,
Dc2d, Cd) is zero. The transition labeled exitpar, which occurs in PROD, PROD1, and PROD2, is an example of an
interaction transition. The interaction exitpar is enabled when Pr = pr2, Pr1 = pr12, and Pr2 = pr22. If exitpar is taken, the
processes PROD, PROD1, and PROD2 progress simultaneously. The transition label send1a,c means there are two

transitions (send1a, send1) connecting the nodes.

Simplify Hardware-Timer Details

Because here we verify only qualitative temporal logic
specifications, the upper time bound on transitions that
model hardware-timers are set to unity when verifying
response properties.

Verification Procedures and Results

For finite-state systems, the Framework provides software
which uses the component process models to compute a
system reachability graph and decision procedures which
use the graph structure in evaluating the validity of
certain system specifications. A reachability graph is a
list of vertices and a list of edges connecting vertices that
summarize possible system behavior. Graph vertices
represent system states, and graph edges represent
transitions which change system state. A behavior of the
system is a path (a sequence of states) in the reachability
graph which starts at a state satisfying an initial condition

specification. A system satisfies a specification if all
possible behaviors satisfy the specification. We present
results for two cases—the Normal Operation case and the
External Channel Failure case.

Normal Operation Case Results

In normal operation of the transputer network modeled by
figure 4, both external channels between transputers are
functional. The reachability graph of the system for this
case was manually diagrammed and is shown as figure 5.

The diagram is relatively simple because process model
details irrelevant to verification of fault-tolerant com-
munication have been abstracted away as described
earlier. In this section, we rely heavily on this diagram
in order to emphasize the usefulness of this system-
behavior-visualization aid. For conciseness we refer to a
diagram of a reachability graph as a Graph.

Transition Label Abbreviations pr
pr. produce 1
en: entemar
ex: exitpar en
sia: sendia
s2a send2a 2
sic: sendic
s2c: send2c - out1 out?2
st1: statust }(4
st2: status2
ci: consumet \/.\
c2: consume2 sla out?2 outl s2a
st1 out2 sla s2a out1 st2

3
./
"/i
/

st1 s2¢

s2c ST sz g 2’ st st2 ste

Figure 5. Reachability Graph, Normal Operation Case. As described in the text this Graph is a projection of system
behavior in that Timer transitions (never taken in Normal Operation) are suppressed in order to enhance system behavior
visualization. In order to eliminate clutter resulting from long lines connecting vertices, some nodes are repeated.
Repeated vertices are circled. The vertex number uniquely identifies the vertex.

Important system characteristics are evident in figure 5:

The system is symmetric. The symmetry of the Graph
reflects the symmetry in the component processes with
regard to use of the communication channels between
processes. (During a modeling effort, absence of expected
symmetry or regularity is often a clear indication of a
modeling error.)

The system is nondeterministic. Many states may be
exited by several transitions—any one of which can be
chosen in a particular cycle. Transitions from the
component processes interleave, indicating the coopera-
tion among the processes to transfer data. Unanticipated
interleaving often results in undesirable system behavior.

When, as in this case, the reachability graph is relatively
simple, certain system specifications can be verified by
visual inspection of the Graph. The relevant specifications
are determined by considering what can go wrong. The
fact that communication is synchronous introduces the
possibility of deadlock if process communication logic is
flawed. The fact that all data are sent via two autonomous
decoupler processes introduces the possibility that data
may arrive at the CONSUMER process “out of order.”

(In the following paragraphs, the symbols S1, 82, etc., are
specification labels.)

Inspection of figure 5 will confirm that:
S1 The system does not deadlock—
because every state has exiting transitions.

S2 All data produced are sent over both external
channels in the order produced—

because following each produce transition, both send1
and send2 transitions precede the next produce
transition.

S3 All data are consumed in the order sent—

because following transmission of data over both channel
send1 and send2, a consume transition precedes the next
occurrence of a send1 or send2 transition.

Together S2 and S3 imply that although the data are
transmitted via two autonomous decoupler processes—

S4 All data produced are consumed in the order produced.

The insight provided by the Graph is also very important
when attempting to write formal specifications in prep-
aration for using the Framework decision procedures.

An “obvious” specification for temporal-ordering of the
data is:

S5 Following a produce transition, a consume transition
precedes the next produce transition.

Specification S5 implies that data are consumed in the
order produced. However, the Graph clearly shows that
specification S5 is unnecessarily restrictive (reference
node 25). That specification would also be impossible to
implement (without compromising the fault-tolerance
objective) because the PRODUCER process has no
information with regard to the status of the CONSUMER
process. In the next section, the decision procedures are
applied to verify similar properties.

External Channel Failure Case

We begin with a brief review of the Framework
specification language and decision procedures. The
Framework specification language is a Temporal Logic in
which many important reactive system properties can be
expressed. Temporal logic specifications are interpreted
over system behaviors (i.e., sequences of reachable states)
which are summarized by a system reachability graph. A
system satisfies a temporal logic specification if all
possible behaviors satisfy the specification. Discussion of
temporal logic is beyond the scope of this report; instead,
we include (necessarily) imprecise English language
interpretations of the temporal logic expressions used. We
next review the three classes (safety, precedence, and
response) of Temporal Logic specifications that we

will need.

A safety specification is conventionally expressed in the
form

S6 y; >0y,

read: if vy, then henceforth y, where ; and s, are
state-formulas.

A system satisfies this specification if y, is TRUE for all
states following any state for which y; is TRUE.

Specifications involving temporal ordering of transitions
can be expressed using the temporal operator P
(precedes) as‘in

87 V12 Py

read: if yy, then W, precedes Y3 where y;, W, and y3
are state-formulas. A system satisfies this specification if
following any state in which y; is TRUE—a state in
which y; is TRUE precedes a state in which y3 is
TRUE.

A response specification is of the form
S8 y1 > 0w

read: if Y, then eventually \, where Y and y, are state-
formulas.

A system satisfies this specification if following any state
in which y; is TRUE—a state in which y, is TRUE is
eventually reached.

The Framework provides decision procedures for safety,
precedence, and response class specifications. The
decision procedures use a system reachability graph,
which summarizes possible system behavior, in eval-
uating specification validity. When a decision procedure
for a class of specifications is invoked to verify a
specification of the class, the decision procedure always
terminates and either confirms the specification validity
or provides information regarding the state(s) and
transition(s) which violate the specification.

In the following paragraphs, we apply the specification
language and decision procedures to verify that fault-
tolerant communication between transputers is achieved.
Specifically, we verify that after failure of an external
channel between transputers:

S9 The system does not deadlock.

S10 All data are transferred between transputers in the
correct temporal order.

The variables Faill and Fail2 provide a convenient way
to introduce an external channel failure. Referring to
figure 4, when Faill is assigned the value TRUE, the
DECOUPLER 1: send1 transition is disabled which
effectively models channel send1 failure. The Graph (i.e.,
the diagram of the reachability graph) for this case is
shown as figure 6. :

The Graph includes both the “transient” system behavior
in the cycle immediately following external-channel
send] failure and the behavior in the cycles thereafter.
We next express the informal specifications 89 and S10
in terms of safety, precedence, and response class
specifications and then invoke the appropriate decision
procedure to check specification validity.

As noted earlier, a system is said to be deadlocked if it is
in a state in which no transition (other than the clock
transition) is enabled. The system was verified to be
deadlock-free by invoking the safety decision procedure
to verify

S11 initial —[J ((enabled 7) and (T # Tick))

i.e., following a state which satisfies the initial condition
specification, some transition (other than the clock
transition) is enabled in every reachable state.

Using the precedence decision procedure, we verified

S12
after_produce — (Next = send2) P (Next = produce)

i.e., after a transition which produces data, the data are
sent before more data are produced (Next is the next-
transition-taken variable)

and

S13
after_send2 — (Next = CONSUME) P (Next = send2)

i.e., after a transition which sends data, those data are
consumed before more data are sent.

Using the response decision procedure, we verified
S14 after_produce —» { after_consume

i.e., all data produced are eventually consumed. The
upper time bound for all transitions was set to unity in
computing the more-complex reachability graph (not
shown) used to verify S14.

Validity of specifications S11, S12, S13, and S14 implies
that fault-tolerant communication between transputers is
achieved. After failure of an external channel between
transputers—the system does not deadlock and all data
are transferred between transputers in the correct
temporal order.

T 0 Transition Label Abbreviations

pr pr produce
| en enterpar

skl skip1
c2 consume2
)2\ to1
tod
5 ¢)/ /\T7\
out2 1 s2a outt t‘r‘ st2
11

8 */ 9 > 10
s2a to1 2 o4 outt /Sé\cz to4” outt
12 i/ 13 { ~ 16 “

sf\ to4 to1 si2 c2 out1

Figure 6. Reachability Graph, External Channel (send1) Failure Case. This Graph is a projection of system behavior in
that send2 channel timer transitions are suppressed in order to enhance system behavior visualization. In order to
eliminate clutter resulting from long lines connecting vertices, some vertices are repeated. Repeated vertices are circled.
The vertex number uniquely identifies the vertex.

Concluding Remarks

In the preceding, using the Ostroff framework for reactive
system verification, an approach to achieving fault-
tolerant communication between transputers was shown
to be effective. The key components of the design, the
decoupler processes, may be viewed as discrete-event-
controllers introduced to constrain system behavior such
that system specifications are satisfied.

The Ostroff framework was also effective. The expres-
siveness of the modeling language permitted construction
of a faithful model of the transputer network. The relevant
specifications were readily expressed in the specification
language. The set of decision procedures provided was
adequate to verify the specifications of interest (although
decision procedures to verify more general classes of
temporal logic specifications will often be useful or
necessary).

However, the Ostroff framework and other current
generation frameworks for reactive system verification
are particularly weak in one very important dimension,
namely, support for system behavior visualization. (The
importance of system behavior visualization during the
verification process was emphasized in the section
discussing Normal Operation Case results.) “Inability to
visualize system behavior” is a factor restricting current
applications to small, safety-critical portions of complex
systems. As a first step, software tools enabling one to
interactively construct, to browse, and to compare
reachability-graph diagrams are needed. Manual con-
struction of these basic visualization aids is an extremely
tedious task. There is great opportunity for innovation
with regard to system behavior visualization tools. For
example, in a related context, an approach wherein
sequences of transitions are mapped into higher-level
transitions improved behavior visualization (ref. 10). The
surveys by Ostroff (ref. 11), Alur and Henzinger (ref. 3),
and Scholfield (ref. 12) describe the vigorous, current
research effort that is directed at developing more
powerful frameworks for reactive system verification.

References

1. Manna, Z.; and Waldinger, R.: Logical Basis for
Computer Programming. Addison-Wesley,1989.

2. Manna, Z.; and Pnueli, A.: The Temporal Logic of
Reactive and Concurrent Systems. Springer-
Verlag, 1991.

10

11.

12.

. Alur, R.; and Henzinger, T. A.: Logics and Models of

Real Time: A Survey. In REX Workshop—Real
Time: Theory in Practice, LNCS, Springer-
Verlag, 1992.

Ostroff, J. S.: Temporal Logic for Real-Time
Systems. Advanced Software Development
Series. Research Studies Press Limited
(distributed by John Wiley and Sons), England, -
1989.

INMOS staff. Communicating Process Architecture.
Prentice Hall, 1988.

Barnes, D. P.; Downes, C. G.; and Gray, J. O.: The
Real Time Control of a Hexapodal Robot Using
Multiple Transputers. In Proceedings of the
Third International Conference on Applications
of Transputers. IOS Press, 1991.

Lawes, S. T.; Clarke, T.; and Taylor, P.: Transputer
Based Real-Time Simulation of Helicopter
Dynamics for Advanced Flight Control
Applications. In Proceedings of the Third
International Conference on Applications of
Transputers. I0S Press, 1991.

. Mandal, M.; Garg, H. K.; Matieda, L. C.; Mishra, A;

Basy, S. K.; Majumder, K. L.; Udpikar, V.; and
Kaushal, A,: Implementation of Synthetic
Aperture Radar Processor on a Transputer Based
Parallel Machine. In Proceedings of the Third
International Conference on Applications of
Transputers. IOS Press, 1991.

. Galletly, J.: OCCAM 2. Pitman Publishing, 1990.
10.

Gennart, B. A.; and Luckham, D. C.: Validating
Discrete Event Simulations Using Event Pattern
Mappings. In Proceedings 29th ACM/IEEE
Design Automation Conference. IEEE Computer
Society Press, 1992.

Ostroff, J. S.: Formal Methods for the Specification
and Design of Real-Time Safety Critical

Systems. Journal of Systems and Software, April
1992.

Scholfield, D. J.: The Formal Development of Real-
time Systems. Technical Report, Dept. of
Computer Science, University of York, England,
1990.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1993 _ Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Reactive System Verification Case Study—Fault-Tolerant Transputer
Communication
6. AUTHOR(S) 505-64-52
D. Francis Crane and Philip J. Hamory
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Ames Research Center
Moffett Field, CA 94035-1000 A-93103
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
National Aeronautics and Space Administration
Washington, DC 20546-0001 NASA TM-108784

11. SUPPLEMENTARY NOTES
Point of Contact: D. Francis Crane, Ames Research Center, MS 210-3, Moffett Field, CA 94035-1000

(415) 604-1434

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified — Unlimited
Subject Category 61

13. ABSTRACT (Maximum 200 words)

A reactive program is one which engages in an ongoing interaction with its environment. A system which is controlled by an
embedded reactive program is called a reactive system. Examples of reactive systems are aircraft flight management systems, bank
automatic teller machine (ATM) networks, airline reservation systems and computer operating systems. Reactive systems are often
naturally modeled (for logical design purposes) as a composition of autonomous processes which progress concurrently and which
communicate to share information and/or to coordinate activities.

Formal (i.e., mathematical) frameworks for system verification are tools used to increase the users’ confidence that a system
design satisfies its specification. A framework for reactive system verification includes formal languages for system modeling and for
behavior specification and decision procedures and/or proof-systems for verifying that the system model satisfies the system
specifications.

In the study reported here, using the Ostroff framework for reactive system verification, an approach to achieving fauit-tolerant
communication between transputers was shown to be effective. The key components of the design, the decoupler processes, may be
viewed as discrete-event-controllers introduced to constrain system behavior such that system specifications are satisfied.

The Ostroff framework was also effective. The expressiveness of the modeling language permitted construction of a faithful
model of the transputer network. The relevant specifications were readily expressed in the specification language. The set of decision
procedures provided was adequate to verify the specifications of interest.

The need for improved support for system behavior visualization is emphasized.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Reactive system verification, Discrete event systems, Parallel programming, 12
Transputer 16. PRICE CODE
p A02
17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANS! Std. Z39-18

